Atherosclerosis – the silent killer

Atherosclerosis, a chronic disease of the arteries that is accompanied by cholesterol deposition, is the gray cardinal of death, a silent killer that people, alas, underestimate. At the age of 30, 40% of Russians already have atherosclerotic lesions. At the age of 40, 50% already have pronounced atherosclerotic lesions. In 60 years, 70% of people have pronounced manifestations of atherosclerosis.

But in most cases, the course of atherosclerosis is asymptomatic. As long as the 70% plaque does not overlap the vessel, there will be no complaints. This is the case when “suddenly”, against the background of complete health, a person enters the hospital with an infocalct or stroke. But this is not “all of a sudden”, but because all people’s reserve capacities are very large and the vessels can carry the load for a long time.

“The main thing is the state of the vascular wall,” explains Alexey Chudinov. – From the outside, the vessel is smooth, like plastic. And if pure cholesterol is passed through this vessel, then cholesterol is not deposited there. Therefore, the discovery made was so important: even if the cholesterol is high, but the vascular wall is in a normal state – cholesterol plaques will not form there. But if microdamages appear on the vascular wall, then vascular plaques begin to form on these microcracks even with normal cholesterol.

What damages the vessels

The main aggravating factors that cause vascular damage are hypertension, diabetes, smoking, alcohol, obesity, a sedentary lifestyle, and taking various medications, often uncontrolled.

“Also, microdefects of blood vessels cause free radicals, saturated fatty acids, aggressive environmental factors, various additives and toxic components that are found in our food today,” Alexey Chudinov continues. – For example, in meat – in fat beef and pork – there are two main unhealthy fats – cholesterol and saturated fatty acids. When saturated fatty acids are subjected to heat treatment, they turn into aggressive factors that cause damage to the endothelium of the vessel. Not immediately, but the more meat there is, the higher the risk of damage to the blood vessels. With age, the vessel becomes rough and atherosclerotic plaques begin to deposit on it.

Headache – a sign of atherosclerosis?

“Atherosclerosis has been modified,” says Alexei Chudinov. – Even 25-30 years ago, we found plaques in large vessels – in the carotid artery, in the aorta, and so on. But now plaques affect even small capillaries, including the brain. Those people who suffer from headaches, dizziness, memory loss, should know that this is primarily a sign that the small vessels are no longer working, that is, they are amazed. After all, intracerebral vessels have a thinner endothelium.

All our organs and tissues, primarily the heart, liver, brain – have a phospholipid membrane, a membrane that protects our cells from damage. When a person constantly uses saturated fatty acids, this saturated fat has the same ability as a dishwashing detergent that destroys fat on a plate. It destroys the phospholipid membrane of brain cells, cardiac cells, liver cells. Two clinical studies of the Institute of Nutrition of the Russian Academy of Medical Sciences proved that excluding saturated fatty acids from food reduces the risk of death by 22%, and the incidence of heart attacks and strokes by 18%. The same studies proved that if a person had a heart attack or stroke, then most likely this condition will recur within 5 years. But if a person switches to a healthy lifestyle, the risk of their recurrence is reduced by 80%.

IMPORTANT

5 principles of a healthy lifestyle (according to the latest scientific data)

1. Proper nutrition – the elimination of cholesterol and saturated fatty acids.

That is, try to eat less or completely abandon the fried meat, especially red and fatty – lamb, marbled beef. Less baking with margarine. Do not fry anything in butter. Try to switch to lighter dairy products (for example, reject cream, hard varieties of cheese).

Try to prepare food in a good mood, do not sort things out in the kitchen, otherwise the kitchen will automatically be perceived as an unpleasant place, and the absorption of food will be worse.

2. Active lifestyle, which raises good cholesterol.

Good cholesterol rises only in one case – if the person is actively moving. Nothing else raises good cholesterol – neither drugs, nor food. After all, the body, in addition to external influence, synthesizes its own cholesterol.

Therefore, vegetarians are not always the right level of cholesterol in the blood. For example, in India, people practically do not eat meat, but still suffer from cardiovascular diseases, atherosclerosis. Our body produces its own endogenous cholesterol, and we have the so-called cholesterol metabolism receptors. As soon as cholesterol levels fall below normal, endogenous cholesterol synthesis increasya And even without eating meat, vegetarians can have quite high cholesterol due to endogenous internal cholesterol.

In order to compensate for this, there is one single way – an active lifestyle, that is, at least a person must move and walk a lot. But not to do grueling physical exertion – they also lead to an increase in cholesterol levels.

3. Freedom from stress and tension.

In addition to food containing saturated fatty acids, damage to the vascular endothelium causes stress. Stress is not what happens to us, but our reaction to situations. Only by remaining calm can we solve problems and difficulties. And only in this case our vessels will remain undamaged by stress.

4. Full sleep.

During a long (at least 8 hours) sleep, cholesterol levels are reduced. Vascular endothelium is restored. Alas, 45% of people today have trouble sleeping. The reason follows from the previous one – anxiety during the day.

5. Acceptance of omega-3 fatty acids.

These substances help the cells of the blood vessels to recover, stay elastic longer. They are contained in nuts, unrefined vegetable oils, wheat sprouts, oily fish.

TWO DIMENSIONAL ECHOCARDIOGRAPHY

Ultrasound is reflected from boundaries tissue deforms piezoelectric crystal and generates electric sky pulse which transformed at the point on the screen .

Brightness and position points depends on from of character and depths investigated structures .

For create two-dimensional Images ultrasonic Ray skipped through region interest . Ultrasound is transmitted along several (90-120) lines scanner of by wide ( about 90 ° ) arc up to20-30 times at second.

Summation reflected ultrasound waves form beats picture on the screen . Fast generation after respectable of images creates ” Living “ picture movable structures . Any frameliving Images can be “Frozen”, analyzed on the screen or printed out on thermal paper .

Two-dimensional Echocardiography allows to study anatomy hearts and relationship different structures .

With two-dimensional cardiography possibly revealing intracardiac formations and pathologies pericardium , visualized motion walls ventricles and leaflets valves .

Also spend measurement thickness walls wish daughters and sizes cameras, computed shock volume fraction emission and cordial overshoot .

Two-dimensional picture use at quality orientation shooting gallery at research at M – mode , and also at doppler – echocardiography for installations control volume .

Parasternal position along the long axis

2D echocardiography not It allows you to directly Rate Vat diastolic function of the left ventricle , however, may reveal associated with It LVH , violations of local by kratimosti , infiltrative diseases myocardium or thickening of the leaves of the pericardium . Alongside with diastolic dysfunction can be detected violation sistoliche tion function of the left ventricle . Special features Diastolic the blood flow ka of LP at LV can be studied with using pulse doppler – echocardiography . For of this control volume is set on level of the cusps of the mitral valve at apical four- position . This study allows to obtain a spectrum of good quality transmitral blood flow .

AT Normally transmitral bloodstream has the following characteristics ( Fig . 6.6, A).

.       Peak passive early diastolic Napoli nenie LV .

.       Peak BUT – active later diastolic Napoli nenie LV .

.       Ratio E / A— > 1.

With LV relaxation disorder at connections gipertro fiey or myocardial ischemia an increase in peak BUT and reduction peak E . With In this respect, the E / A ratio becomes less than 1 ( Fig . 6.6, B). Time deceleration of peak E is lengthened (> 220 ms ).

Have patients older than 50 years for confirmation dia stolicheskoy dysfunction required reduction ratio E / A of less than 0.5 in connections with normal increase am plitudy peakBUT with of this age . This type diastema netocrystalline dysfunction received the title of ” slow relaxation ” and reflects reduced LV compliance . With This is marked by an increase in the pre- rhythm systole contribution . at filling the ventricle .

With tackle extensibility infarction due infiltrative disorders or constrictive pericarditis peak E becomes very high , and the peak BUT low . Time deceleration peak E ukorachi INDICATES (<150 ms ). These violations diastole include to restrictive type and reflect an increase in diastolic pressure of course at LV . Filling of the ventricle occurs quickly. atearly diastole , when this contraction schenie atrial unable longer stretch of LV .

Tricuspid valve

The tricuspid valve is formed by three leaves : a large front , a small septal and tiny back sash . The movement of the front tricuspid valve is visualized when scanning at M – modeat parasternal position by long axis at RV , in front of the IVS . The movement of the front leaf of the tricuspid valve is very similar. with as described by the PSMK motion.

The septal valve of the tricuspid valve is visualized only during dilatation of the pancreas. or turning the hearts due to emphysema, lung and development pulmonary heart . Septal leaf of tricuspid valve makes movement of smaller amplitude at direction.

Aortic valve

Aortic valve consists of three valves : in front of her right coronary , posterior non-coronary and middle left coronary cusps . Right and non-coronary vie zualiziruyutsya when scanning at M – mode of pair – sternal position by long axis .

AT front systole and back sash diverge by direction to front and the posterior walls of the aorta, respectively . This kind of movement forms a characteristic “ box ” when the valve opens systolic at form of parallelogram . AT diastole sashes touch , forming a centrally located at the lumen of the aorta line of closure . Clamp line on is going on almost equal distance from the front and back of the aorta .

Subcostal position 


For receiving subkostal patient position stack on back exactly with a low headboard ( without a pillow ). The legs of the patient with this little bend at lap you can put a roller ). Images of the best 
 qualities are obtained on inhale with a relaxed anterior abdominal wall . Sensor position : under the xiphoid process . On sensor marker board : on the left shoulder . 
 Available for structure analysis – as for four position cameras . Subcostal position is especially useful when 
 those canonically complex transthoracic studies with the presence in the patient expressed obesity , deformation of the rib cage , emphysema lung . From subcostal position better , than 
 of four- dimensional , visualized lower vena cavaand pechenoch nye veins , abdominal department of aorta , WFP , pericardial effusion .

Supersternal access

For receiving Images of suprasternal patient access stack on back . Under shoulders UCLA dyval pillow , that allows to achieve the maximum bending of the neck . The head turns slightly to the left . Position hands and feet as well as the respiratory phase not affect on quality Images of of this access .

Position of the sensor : nadgrudinny fossa . The direction of the marker sensor : on the left temporo – mandibular joint .

Available for structure analysis :

.       aorta ascending arch descending );

.       trunk vessels ( with the ability to assess their position ).

TRANSCONTAL ECHO CARDIOGRAPHY

Standard transthoracic echocardiography is performed with using different dos stupid on anterior surface of thoracic cells . It is also possible to Prove denie echocardiography withusing a special sensor of esophagus . This study was called transesophageal echocardiography .

For conducting transthoracic echocardiography of the patient stack reclining on left side with raised head end . Left hand bend at elbow and UCLA dyval under the head , the right hand is free to lie along the trunk . With This position of the patient revealed the intercostal spaces , which provides optimal hydrochloric visualization of the heart , then as the area of the heart , hidden behind the ribs and light , remain inaccessible for ultrasound . Image recording at late expiration allows you to improve quality visualization due to reduced information loss on border media WHO spirit – cloth .

With conducting echocardiography in adults used sensors with frequency of 2.5-3.5 MHz . This frequency range allows studying deeply located structures due to high penetrating power .

AT pediatric practice use sensors ca rangefinders 5 MHz , so as in children the heart is located closer to front chest wall .

On sensor applied ultrasound gel and We establish vayut it on rib cage at areas of the ultrasound window . The most frequently used left parasternal – ny and apical access . On the one hand on The sensor has a mark that allows you to navigate when removing different echocardiographic positions .

For receiving echocardiographic images need to install a sensor at certain access points at the right angle . For optimal vyve Denia that or a structure of the sensor is necessary to reject the ( upward or down ) or rotate by axis ( on the hour or anti- clockwise arrow ).

PERFORMANCE TECHNIQUE

Equipment fulfillment colored doppler is following is close to standard echocardiography and pulse hydrochloric doppler – echocardiography . how and at normal echocardiographic study , for receiving standard position use parasternal or apical accesses .

With obtaining a quality image including The chaetsya mode color Doppler study .

Color Doppler image automatically superimposes and displayed simultaneously with mill dard gray-scale.

For optimize color doppler image of it may be necessary to reject the sensor at that or other side . The resulting image is often a compromise. by quality two-dimensional and color Doppler image .

Settings Gain gray-scale image should be minimal for adequately visualized tion structures of the heart . Gain values too low not allow you to get a clear anatomical information

mation , and very high gain leads to WHO penetration artifacts and noisy images , it affects on quality and color Doppler study .

Follows blowing optimally adjust the parameters of the filter tion rate and color gain . Setting the filter value too high and low amplification reducible dit to possible underestimation of low-speed flows . Filter value too low and high gain on color doppler image result to the occurrence of artifacts from the structures of the heart , making it difficult to assess the real blood flow .

PULSE DOPPLEROVSKOE STUDY

Impulse Doppler study transmits ultrasound impulses in series . With this new pulse is sent after receiving reflected signal .

Required temporary delay for registration reflected signal limits maximum cha stota transmission pulses . therefore the mode not fits for registration high speed flows .

With speeds more than 2 m / s arises change by lariness blood flow, known as Effect distortions spectrum .

Impulse Doppler study provide begs the best quality spectrum at comparing with constantly wave that It has important value at calculations .

Impulse Doppler study used are calling for accurate localization abnormal speed streams identified at constantly – wave extra Plerovo research and colored doppler mapping .Indicators transmitral blood flow use for ratings diastolic functions left ventricle ( LV ). Indicators transaortic kro water flow use for calculations shock volume and cordial ejection .

PHYSICAL PRINCIPLES

Color Doppler study is an automat tizirovannymi option pulsed doppler research . Also this mode called doppler skim by research at real of time .

Color Doppler study allows in and zualize intracardiac blood flow at the form color cards blood flow . Color mapping blood flow sometimes called ” Non-invasive angiography, “so asat the same time men with information about functions rate and anatomy . After Togo as series pulses transmitted along one the lines scan by analogies with pulsed dopple rovskyresearch is reflected from red blood cells, is performed her analysis autocorrelator echocardiograph .

Autocorrelator compares frequency reflected signal with original frequency. After of this difference frequencies assigned to certain Colour by to a certain to the algorithm .

Analysis sets control volumes along each of sets lines scan allows to create coded different flowers card about land interest .

AT color map blood flow encoded information tion as about speed, so and about direction blood flow . With overlay color cards blood flow on grayish two-dimensional pictureappears opportunity is full valuable interpretations received information .

Flow directed to sensor, coded shade mi red as well directed from sensor  shades blue colors .

With increasing speeds blood flow shade blue or red colors becomes more light . So way low speeds seem dark as well high cue  bright and light .

Turbulent high speed blood flow mapping is at colored doppler mode at the form mosaic flow with shades blue, green, and yellow flowers .

Like Effect changes colors underlines high speed blood flow and arises at connections with is by sight doppler spectrum at mode pulsed Doppler – echocardiography .

X-ray examination of blood vessels

At present, almost all blood vessels (angio- or angiography) are available on live x-rays. The clinic uses various methods of X-ray examination of vessels filled with a radiopaque substance: examination of vessels (angiography), arteries (arteriography), heart and main arteries (angiocardiography), veins (phlebography) and lymphatic vessels (lymphography). In various types of aortography (injection of radiopaque substances, etc.), the aorta can be traced along its entire length and in all its parts: ascending, arc, thoracic and abdominal – with large arteries of the abdominal cavity: splenic, renal, etc. leaving it.

In the left (nipple) oblique position, all parts of the aorta are visible: ascending, arch and descending – to the diaphragm. Bright oval space, limited in front by the shadow of the heart, and above and behind – by the aorta (retrocardial pulmonary field) is called the aortic window. This “window” is narrow or wide, depending on the shape of the chest, the height of the standing of the diaphragm and the position of the heart. In people with a wide and short rib cage, with a high standing of the diaphragm with a horizontal position of the heart, there is a high standing and “unfolded” type of aorta. In this case, both knees of the aorta (ascending and descending) are more distant from each other: the “aortic window” is extended, the aortic arch is relatively straight. In people with a narrow and long rib cage and low standing of the diaphragm with the vertical position of the heart, inverse ratios are observed.

Using an injection of a contrast agent in the abdominal aorta, an image of the abdominal aorta, pars abdominalis aortae, is obtained. Also visible is its bifurcation and the course of both common iliac arteries and their large branches. In the living, due to the intravital tone and mobility of neighboring organs, the abdominal part of the aorta may shift slightly to the right and slightly arcuately bulge to the right, which can be mistaken for pathology, such as pushing the aorta with a tumor.

An x-ray examination of the remaining blood vessels of a living person by injecting (injecting) directly into the vessels of contrasting substances with simultaneous x-rays at the time of injection is called angiography.

When injected into the carotid artery, the common carotid artery is examined, dividing it into the external and internal carotid arteries and branching them in the head and brain (arterial encephalography, or brain angiography).

Introducing contrast agents into the brachial or femoral artery receive the image of large arterial trunks of limbs and their branches.

Selective (selective) arteriography of the arteries of the abdominal cavity allows studying the celiac trunk, mesenteric, renal arteries and their branches. At the same time, the entry of arteries into the gates of organs, in particular the spleen, liver and kidneys, is clearly noticeable. During radiography of the arteries of the parenchymatous organs, not only extraorgan vessels, but also intraorgan vessels are visible.

Features of blood circulation of the fetus. Placental circulation

Oxygen and nutrients are delivered to the fetus from the mother’s blood with the help of the placenta – placental circulation. It occurs as follows. The arterial blood enriched with oxygen and nutrients flows from the mother’s placenta into the umbilical vein, which enters the fetal body in the navel and goes up to the liver, lying down in its left longitudinal sulcus. At the level of the gate of the liver v. The umbilicalis is divided into two branches, one of which immediately flows into the portal vein, and the other, called ductus venosus, rambles along the lower surface of the liver to its posterior margin, where it flows into the trunk of the inferior vena cava.

The fact that one of the branches of the umbilical vein delivers pure arterial blood through the portal vein of the liver gives rise to a relatively large liver; The latter circumstance is associated with the necessary for the developing organism the function of the blood formation of the liver, which prevails in the fetus and decreases after birth. After passing through the liver, blood through the hepatic veins flows into the inferior vena cava.

Thus, all the blood from v. Umbilicalis, either directly (through ductus venosus), or indirectly (through the liver) enters the inferior vena cava, where it is mixed with venous blood flowing through the inferior vena cava inferior from the lower half of the fetus.

Mixed (arterial and venous) blood through the inferior vena cava flows into the right atrium. From the right atrium, it is guided by a valve of the inferior vena cava, valvula venae cavae inferioris, through the foramen ovale (located in the atrial septum) into the left atrium. From the left atrium, the mixed blood enters the left ventricle, then into the aorta, bypassing the pulmonary circulation that is not yet functioning.

In addition to the inferior vena cava, the superior vena cava and the venous (coronary) sinus of the heart flow into the right atrium. Venous blood entering the superior vena cava from the upper half of the body, then enters the right ventricle, and from the latter into the pulmonary trunk. However, due to the fact that the lungs do not function as a respiratory organ, only a small part of the blood enters the lung parenchyma and from there through the pulmonary veins into the left atrium. Most of the blood from the pulmonary trunk along the ductus arteriosus passes into the descending aorta and from there to the viscera and lower extremities. Thus, despite the fact that in general the mixed blood flows through the vessels of the fetus (with the exception of v. Umbilicalis and ductus venosus before its inflow into the inferior vena cava), its quality below the confluence of the ductus arteriosus deteriorates significantly. Consequently, the upper body (head) receives blood richer in oxygen and nutrients. The lower half of the body eats worse than the upper, and lags behind in its development. This explains the relatively small size of the pelvis and lower limbs of the newborn.

The act of birth represents a leap in the development of an organism, during which fundamental qualitative changes of vital processes take place. The developing fetus moves from one environment (uterine cavity with its relatively constant conditions: temperature, humidity, etc.) to another (outside world with its changing conditions), as a result of which the metabolism, as well as the ways of nutrition and respiration, change radically. Instead of nutrients previously obtained through blood, food enters the digestive tract, where it undergoes digestion and absorption, and oxygen begins to flow not from the mother’s blood, but from the outside air due to the inclusion of respiratory organs. All this is reflected in the blood circulation.

At birth, there is a sharp transition from placental circulation to the pulmonary. At the first inhalation and stretching of the lungs with air, the pulmonary vessels greatly expand and fill with blood. Then ductus arteriosus collapses and obliterates during the first 8–10 days, turning into ligamentum arteriosum.

The umbilical artery overgrown during the first 2 – 3 days of life, the umbilical vein – a little later (6 – 7 days). The flow of blood from the right atrium to the left through the oval hole stops immediately after birth, as the left atrium is filled with blood coming from the lungs, and the difference in blood pressure between the right and left atria is equalized. The closure of the oval hole occurs much later than the obliteration of ductus arteriosus, and often the hole persists during the first year of life, and in 1/3 of cases it lasts a lifetime. The described changes are confirmed by X-ray live research.